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LETTER TO THE EDITOR 
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thermodynamics 
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Department of Physics, University of the Witwatersrand, Johannesburg, South Africa 

Received 12 December 1985 

Abstract. Landau and Lifshitz showed that phenomenological equations of extended non- 
equilibrium thermodynamics, reciprocity included, can be cast in Langrangian form, so 
long as the kinetic equations are linear in time derivatives of the even variables. It is shown 
that this formalism can be extended to the general non-linear case. 

A closed system is described by a set {a i }  of variables even with respect to time reversal 
and a set { T ~ } ,  where T~ = cii, which are odd. By an extension of the Zwanzig (1960, 
1961) projection operator technique, a derivation has been given (Nettleton 1985) of 
the phenomenological equations 

with the reciprocity relations 

Here F j  = -aF/aaj, Fj* = -aF/aTh and the free energy F and L r )  are non-linear in 
the 77 variables and in the deviations {ai - aio} from equilibrium. 

In the case where the Lf’ are independent of the 77 variables and the {Fj*} are 
linear therein, Landau and Lifshitz (1958) (see also Casas-Visques et a1 1984, p 25) 
have shown that (la, b) and (2) are equivalent to 

F=  T+ V =  L + 2 V  

(a/at)(aL/aV,) -aL/aai = Ri 

where T represents the terms in F which are bilinear in the 7)  variables, and Ri = 
-aR/aTi is a non-conservative force which is minus the vi derivative of a dissipation 
function, R. Landau and Lifshitz (1958) assumed the coefficients in T and R to be 
constant, but we shall see that they can be a-dependent, so that the assumption is 
unnecessary. By postulating functions L and R of appropriate symmetry, one can 
derive macroscopic equations of motion more directly by (3b) than by (la, b) (Sannikov 
1962a, b). It remains to explore whether (3a, b) can be extended to the general 
non-linear case. 
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Suppose 

where the F”“) coefficients depend on the set { a l } .  This permits us to define fig so 
that F:=ZJ Fll~,. Setting L = 2 T - F  in ( 3 b ) ,  we have 

R,. ( 5 )  
a2T a2F 

Let us determine T so that 

2a2T/avravl - a 2 F / a v 1 a ~ J  = - f i l l  ( 6 )  

i.e. T is even in the 7 variables, with 

That this is a natural way to calculate T is seen if we note that 

Equation ( 6 )  ensures that the F, term in (5) is consistent with the corresponding term 
in (1 b ) .  Putting (1 b )  into (5) and using ( 7 ) ,  we find 

-C F,]L;;F*,+C (2a2T /av ,a~ ,  -a2F/aq,aal)VJ -2aT/aa, = R,. (9) 
Jm I 

Equations (9) and (7)  imply that 

which is the rate of irreversible entropy production. This must hold if Ri is a non- 
conservative force. Equations ( 6 )  and (7) are thus consistent with this requirement. 

Corresponding to the Lagrangian, there is also a Hamiltonian formulation. Defining 
p i  = aL(a,  v) /dv , ,  we set 

since we can verify from (7) that Z i  p i v i  = 2T With this H, we find that aH( a, p ) / a p i  = vi 
and aH(a ,  p ) /aa ,  = -dL(a, v ) /da i ,  so that the Lagrangian equations ( 3 )  go over into 
canonical Hamiltonian form. 

In the Lagrangian derivation of the equations of motion, an ansatz is made for R, 
with coefficients ultimately to be found from experiment. We want to see how this 
ansatz becomes more complicated in the general non-linear case. Referring to (9) for 
Ri, and given that F is presumed known and T is determined above, we concentrate 
on the first term on the left. The coefficients in this term have the form 

where cim is not constant, as it was when equations (1) were linear in the {v i } .  Inspection 
of the microscopically derived expression for L$,? (Nettleton 1985, equation (27) )  
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shows that if cy is expanded in powers and products of {FT},  the coefficients are not 
symmetric with respect to the interchange of all indices. In first approximation 

where Cyk # Cgk. 

From (9) and (13) ,  we see that we can find L so that (la, b) are equivalent to (2). 
However, Ri is no longer the derivative of a simple quadratic dissipation function. 
The more complicated structure of (13) removes many of the advantages of the 
Lagrangian approach. The Onsager-Casimir formulation has an advantage in that it 
has been shown (Nettleton 1967) explicitly for n = 2 that if we can calculate F,, and 
( 1  b) from a model, then, with the antireciprocity relation of (2), we can find FF), )p(2) .  
The reciprocity relations can thus be invoked to calculate the 7 dependence of F if 
the a dependence can be found from a model. 
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